Adenosine A2A receptor modulation of juvenile female rat skeletal muscle microvessel permeability.
نویسندگان
چکیده
Little is known of the regulation of skeletal muscle microvascular exchange under resting or stimulating conditions. Adenosine (ADO) levels in skeletal muscle increase during physiological (exercise) and pathological (hypoxia, inflammation, and ischemia) conditions. Later stages of these pathologies are characterized by the loss of vascular barrier integrity. This study focused on determining which ADO receptor mediates the robust reduction in microvessel permeability to rat serum albumin (P(s)(RSA)) observed in juvenile female rats. In microvessels isolated from abdominal skeletal muscle, ADO suffusion induced a concentration-dependent reduction in arteriolar [log(IC(50)) = -9.8 +/- 0.2 M] and venular [log(IC(50)) = -8.4 +/- 0.2 M] P(s)(RSA). RT-PCR and immunoblot analysis demonstrated mRNA and protein expression of ADO A(1), A(2A), A(2B), and A(3) receptors in both vessel types, and immunofluorescence assay revealed expression of the four subtype receptors in the microvascular walls (endothelium and smooth muscle). P(s)(RSA) responses of arterioles and venules to ADO were blocked by 8-(p-sulphophenyl)theophylline, a nonselective A(1) and A(2) antagonist. An A(2A) agonist, CGS21680, was more potent than the A(1) agonist, cyclopentyladenosine, or the most-selective A(2B) agonist, 5'-(N-ethylcarboxamido)adenosine. The ability of CGS21680 or ADO to reduce P(s)(RSA) was abolished by the A(2A) antagonist, ZM241385. An adenylyl cyclase inhibitor, SQ22536, blocked the permeability response to ADO. In aggregate, these results demonstrate that, in juvenile females (before the production of the reproductive hormones), ADO enhances skeletal muscle arteriole and venule barrier function predominantly via A(2A) receptors using activation of adenylyl cyclase-signaling mechanisms.
منابع مشابه
Contraction induced secretion of VEGF from 3 skeletal muscle cells is mediated by adenosine 4
25 The role of adenosine and contraction for secretion of VEGF in skeletal muscle was 26 investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes 27 were inserted into the thigh muscle of seven male subjects and dialysate was collected at 28 rest, during infusion of adenosine and during knee extensor exercise. The dialysate was 29 analyzed for content of VEGF p...
متن کاملThe Mediating Role of A2A Adenosine Receptors in the Mitochondrial Pathway of Apoptotic Hippocampal Cell Death, Following the Administration of MDMA in Rat
Introduction: The 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a popular recreational drug and a major source of substance abuse, which ultimately leads to sensations of well-being, elation and euphoria, moderate derealization/depersonalization, and cognitive disruptions, as well as intense sensory awareness. The mechanisms involved in memory impairment induced by MDMA are not completel...
متن کاملNeutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram.
Bacterial meningitis is a disease worsened by neutrophil-induced damage in the subarachnoid space. In this study, the A2A adenosine receptors on human neutrophils were characterized, and the role of A2A receptors on the trafficking of leukocytes to the cerebrospinal fluid and on blood-brain barrier permeability (BBBP) was assessed in a rat meningitis model. Neutrophils bind the A2A selective an...
متن کاملA2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction
Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We adm...
متن کاملAdenosine A1receptor-mediated antiadrenergic effects are modulated by A2a receptor activation in rat heart.
Presently, the physiological significance of myocardial adenosine A2a receptor stimulation is unclear. In this study, the influence of adenosine A2a receptor activation on A1 receptor-mediated antiadrenergic actions was studied using constant-flow perfused rat hearts and isolated rat ventricular myocytes. In isolated perfused hearts, the selective A2a receptor antagonists 8-(3-chlorostyryl)caff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 6 شماره
صفحات -
تاریخ انتشار 2006